

Funded by the European Union

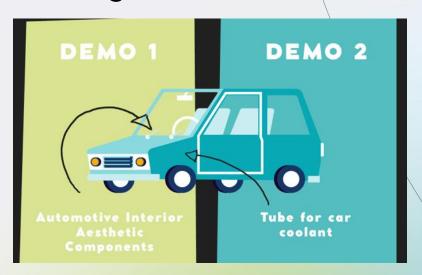
Views and opinions expressed are however those of the author(s) only and do not
 necessarily reflect those of the European Union or HADEA. Neither the European
 Union nor the granting authority can be held responsible for them.

TECHNICAL ADVANCEMENTS

REGULATORY RECOMMENDATIONS

DIGITAL TOOLS AND STAKEHOLDERS' RECOMMENDATIONS

	11.30-12:00	Recycled materials for automotive sector Ainara Telleria, Cikautxo Beñat Madariaga, Maier	PRE-1000 tool Andromeda Scoppio, Plastics Recyclers Europe	Sustainability Assessments & EcoProfiles Julia Cilleruelo, GreenDelta
	12:00-13:00	Lunch Time		
	13:00-13:30	Results from home appliances pilot: washing machine Ainara Telleria, Cikautxo	POPs Regulation Ana Rita Neiva, Coolrec Mathilde Taveau, Plastics Recyclers Europe	Digital Product Passport Teresa Oberhauser, Circularise
	13:30-14.00	Coffee Break and Networking		
Γ				
	14:00-14:30	Food-contact solutions Ana Rita Neiva, Coolrec.	Food-contact Regulation for recycled plastics Mathilde Taveau, Plastics Recyclers Europe	Stakeolders' engagement Eve-Liis Roosmaa, Tallin university
	14:00-14:30 14:30-15:00		plastics Mathilde Taveau, Plastics Recyclers Europe	Eve-Liis Roosmaa, Tallin



RECYCLED MATERIALS FOR AUTOMOTIVE SECTOR

DEMO 1: Automotive interior

DEMO 2: Automotive cooling circuit and its elements

RECYCLED MATERIALS FOR AUTOMOTIVE SECTOR

OBJE CTIVE

Demonstrate the possibility to use recycled materials in two different automotive applications.

Feasibility of the manufacturing processes (injection moulding and extrusion) using recycled materials.

Analyse the level of fulfillement of the technical specifications with demonstrators with different recycled material levels.

Ainara Telleria Echaniz

PRIMUS project www.primus-project.eu

Material development for fluid handling division at

PRIMUS WP4 leader is experienced in material development for automotive industry. After a Chemical Degree, she did her masters in Applied Chemistry and Polymeric Materials followed by the PhD in Inorganic Chemistry. She is working at CIKATEK R&D and Innovation Centre for the past 8 years, developing new materials for the automotive industry, focused on the automotive cooling system and its elements.

Beñat Madariaga Aurrekoetxea

PRIMUS project www.primus-project.eu

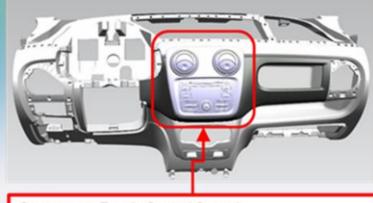
R&D+I Project Leader at

PRIMUS WP4 DEMO 1 leader is experienced in managing development projects of plastic injected parts for automotive industry. He has a B.Sc. Degree in Polymer Engineering. He is working at MAIER R&D and Innovation Centre for the last 14 years, developing new finishings and applications for the automotive industry, focused on the automotive interior and exterior decorative and functional plastic parts.

RECYCLED MATERIALS FOR AUTOMOTIVE SECTOR interior

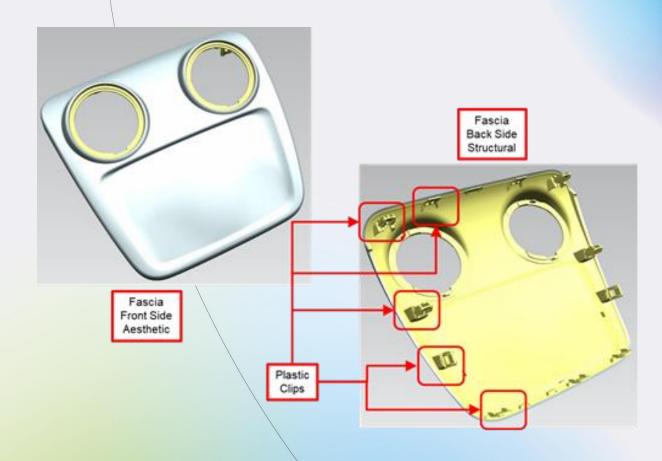
CONTENTS

- 1. Description of the Fascia-Central Console.
- 2. Champion formulations.
- 3. Manufacturing of the demonstrators.
- 4. Validation of the parts.


1. Description of the Fascia-Central Console.

1. Description of the Fascia Central Console.

Component: Fascia Central Console

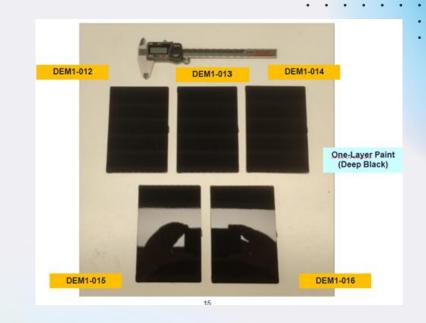

Material: PC+ABS Prime (Front Side)

PC+ABS Recycled (Back Side)

Process: 2K Injection (Bi-material)

Finish: Aesthetic (Mass coloured, Painted)
Assembly: Dashboard, Airbag, Radio, Aerators

2. Champion formulations.



2. Champion formulations.

Samples of DEM1-012 to DEM1-016 PC+ABS Recycled materials

Туре	Source	Code
PC + ABS	VTT Recycled	DEM1-012
PC + ABS	VTT Recycled	DEM1-013
PC + ABS	VTT Recycled	DEM1-014
PC + ABS	VTT Recycled	DEM1-015
PC + ABS	VTT Recycled	DEM1-016

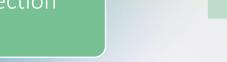
Preparation of 2D sample plates

Surface energy (contact angle test) tested on 2D samples.

Formulation DM1-013 (MTC 612) has been selected for 3D injection molding.

50kgs produced and tested.

				Res	ults			
Variants	Contact Angle			1	Total Surface tension			
	1	2	3	Av.	1	2	3	Av.
DM1-012-MTC 611	82,084	76,016	78,465	78,855	34,180	37,985	36,440	36,202
DM2-013-MTC 612	71,686	75,174	82,333	76,398	40,665	38,520	34,025	37,737
DM1-014-MTC 613	80,733	86,490	82,651	83,291	35,025	31,420	33,510	33,318
DM1-015-MTC 614	83,162	84,751	83,086	83,666	33,500	32,510	31,990	32,667
DM1-016-MTC 615	85,302	82,029	83,621	83,651	32,165	34,215	33,215	33,198



Injection

Moving Half (Left) Rotating Half (Right)



Assembling

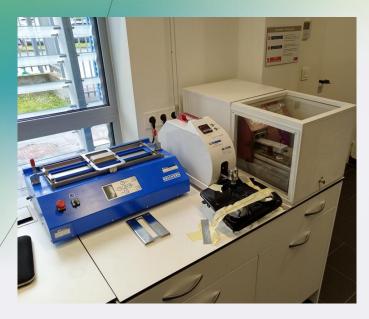
Trial Date Project			0.1D-1	1. Defense	D (Delese 1)		O (Description)	
			A (Prime 04-0	+ Pnme)	B (Prime + 04-0	Recycled)	C (Recycled 02-0	+ Recycled
Project		_						
			IDIO	073	IDIO	073	IDIO	073
	Code		7791		77911		7791	
Part	Name		15A1		15A1	130	15A1	1130
rait			Fah	ada	Faha	ada	Fah	ada
	Finishing		Pul		Puli		Pul	
	Code		PLA00072	PLA00072	PLA00072	DEM1-013	DEM1-013	DEM1-01
	Туре		PC+ABS	PC+ABS	PC+ABS	PC+ABS	PC+ABS	PC+AB
Material	Name	_	BAYBLEND	BAYBLEND	BAYBLEND	Recycled	Recycled	Recycle
material		_						
	Grade	_	T65XF	T65XF	T65XF	VTT	VTT	VI
	Colour		BK 901510	BK 901510	BK 901510	BK	BK	В
	Equipment		Piovan	HR200	Piovani	HR200	Piovan	HR200
	Silo							
Pre-Drying	Time	(h)	4	4	- 4	4	4	
	Temperature	(°C)	80	80	80	90	90	9
1		(~)	E700 M				E700 M	
	Equipment	_			E700 M	unteur		
	Code	_	1070	111	1070	11	1070	37.7
Injection Moulding Ma	Injection Unit		1	1	1	3	1	
-,	ScrewDiameter	(mm)	70	70	70	55	70	
	L/D Ratio		22	22	22	20	22	2
	Max. Capacity	(cm³)	1.500	1.500	1.500	511	1.500	51
Manual Tarana and an	Jimax. Oupdotty	Tun,	1.000	1.000	1.000		1.000	
Mould Temperature	Equipment	_	Park I		Police of		Police 1	
	Equipment		Frigel		Frigel		Frigel	
e:r	Code	_	ATE0151		ATE0151		ATE0156	
Fixed Half		-	1		1		1	
	Set	(°C)	80		80		70	
	Actual	(℃)						
	Equipment			Frigel		Frigel		Frig
	Code			ATE0151		ATE0158		ATE015
Rotating			1	1		2		
	Set	(°C)	1	80		70		-
	Actual	(°C)	1	- 00		,,,		
	Equipment	10/	Frigel		Frigel		Frigel	
	Code	_	ATE0156		ATE0158		ATE0156	
Moving Half	Code	_	A1E0100		ATEUTO		ATEUIDO	
MOVING Hall	Set	(°C)	65		65		70	
			00		100		70	
	Actual	(°C)						
	Injection Unit		1	1	1	3	1	
	Screw Rotation	(m/s)	0,25	0.25	0,25	0,25	0,25	0,2
	Backpressure	(bar)	20,00	20,00	20,00	20,00	20,00	20,0
	Stroke (Shot Size)	(cm²)	270,00	270,00	270,00	270,00	270,00	270,0
	Dossing Delay	(s)	1.00	1.00	1,00	1,00	1.00	1.0
	Dossing Delay	(s)	7.14	7.14	7.14	1,00	1,00	1,0
	Dossing Time	(cm²)	50.00	50.00	50.00	70,00	70,00	70.0
	Switchover position					70,00	70,00	70,0
Injection	Cushion	(cm²)	48,93	48,93	48,93			
	Injection Speed	(cm³/s)	70,00	70,00	70,00	100,00	100,00	100,0
	Injection Pressure (Limit)	(bar)	1.500,00	1.500,00	1.500,00	1.900,00	1.900,00	1.900,0
	Injection Pressure (Max)	(bar)	971,00	971,00	971,00	1.460,00	1.460,00	1.460,0
	Injection Filling Time	(s)	3,45	3,45	3,45	2,09	2,09	2,0
	Holding Pressure	(bar)	400,00	400,00	400,00	400,00	400,00	400,0
	Holding Pressure Time	(s)	8,00	8,00	8,00	8,00	8,00	8,0
	Cooling Time	(s)	30,00	30,00	30,00	30,00	30,00	30,0
	Cycle Time	(s)						
	joy de Tille							
			-		- 1	3		
	Injection Unit	(90)	1 200	1	1 200	9	1 270	~
	Injection Unit Nozzle	(°C)	260	260	260	270	270	27
	Injection Unit Nozzle T1	(°C)	280 280	280 280	260 260	270 270	270 270	27
Melt Temperature	Injection Unit Nozzle T1 T2	(°C)	280 280 250	280 280 250	260 260 250	270 270 260	270 270 280	27 26
Melt Temperature	Injection Unit Nozzle T1 T2 T3	(°C)	260 260 250 250	280 280 250 250	260 260 250 250	270 270 260 260	270 270 280 280	27 26 26
Melt Temperature	Injection Unit Nozzle T1 T2 T3 T4	(°C) (°C) (°C)	280 280 250 250 240	280 280 250 250 240	260 260 250 250 240	270 270 260 260 250	270 270 280 280 250	27 26 26 25
	Injection Unit Nozzle T1 T2 T3 T4 T5	(°C) (°C) (°C) (°C)	280 280 250 250 240 240	280 280 250 250 240 240	260 260 250 250 240 240	270 270 260 260 250 250	270 270 280 280 250 250	25 26 25 25 25
	Injection Unit Nozzle T1 T2 T3 T4 T5	(°C) (°C) (°C)	280 280 250 250 240	280 280 250 250 240	260 260 250 250 240	270 270 260 260 250	270 270 280 280 250	25 26 25 25 25
	Injection Unit Nozzle T1 T2 T3 T4 T5 Hopper	(°C) (°C) (°C) (°C)	280 280 250 250 240 240 70	280 280 260 250 240 240 70	260 260 250 250 250 240 240 70	270 270 260 260 250 250	270 270 280 280 250 250 70	27 27 26 26 25 25
	Injection Unit Nozzle T1 T2 T3 T4 T5 Hopper	(°C) (°C) (°C) (°C)	280 280 250 250 240 240	280 280 250 250 240 240	260 260 250 250 240 240	270 270 260 260 250 250	270 270 280 280 250 250 70	27 27 26 26 25 25
	Injection Unit Nozzle T1 T2 T3 T4 T5 Hopper	(°C) (°C) (°C) (°C)	280 280 250 250 240 240 70	280 280 260 250 240 240 70	260 260 250 250 250 240 240 70	270 270 260 260 250 250	270 270 280 280 250 250 70	25 26 25 25 25
	Injection Unit Nozzle T1 T2 T3 T4 T5 Hopper	(°C) (°C) (°C) (°C) (°C)	280 280 250 250 240 240 70	280 280 260 250 240 240 70	260 260 250 250 240 240 70	270 270 260 260 250 250	270 270 280 280 250 250 70 1	25 26 25 25 25
	Injection Unit Nozzle 172 173 173 174 175 Hopper Injection Unit M1 M2	(°C) (°C) (°C) (°C) (°C) (°C)	280 280 250 250 240 240 70	280 280 260 250 240 240 70	260 260 250 250 240 240 70	270 270 260 260 250 250	270 270 280 280 250 250 70 1	25 26 25 25 25
	Injection Unit Nozzie T 1 1 1 7 2 T 3 T 4 T 5 Hopper Injection Unit M1 M2 M3	(°C) (°C) (°C) (°C) (°C) (°C)	280 280 250 250 240 240 70 1 1 280 260 260	280 280 260 250 240 240 70	260 280 250 250 240 240 70 1 1 280 280 280	270 270 260 260 250 250	270 270 280 280 250 250 70 1	25 26 25 25 25
	Injection Unit Nozzle 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	280 280 250 250 240 240 70 1 280 280 280 280	280 280 260 250 240 240 70	260 260 250 250 240 240 70 1 1 280 280 280 280 280	270 270 260 260 250 250	270 270 280 280 250 250 70 1 270 270 270 270	25 26 25 25 25
	Injection Unit Nozzie T1 T1 T2 T3 T4 T5 Hopper Injection Unit M1 M2 M3 M4 M5	(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	280 280 250 250 240 240 70 1 1 280 280 280 280 280	280 280 260 250 240 240 70	260 280 250 250 240 240 70 1 1 260 280 280 280 280 280	270 270 260 260 250 250	270 270 280 280 250 70 1 270 270 270 270 270	25 26 25 25 25
	Injection Urat Nozzle T1 T2 T3 T4 T4 T5 Hopper Injection Urat M2 M3 M4 M5 M6	(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	280 280 280 250 240 240 70 1 1 280 280 280 280 280	280 280 260 250 240 240 70	260 260 250 250 240 240 70 1 1 260 260 260 280 280 280 280	270 270 260 260 250 250	270 270 280 280 250 250 70 1 270 270 270 270 270	25 26 25 25 25
	Injection Unit Nozzle T1 T1 T2 T2 T4 T5 Hopper Injection Unit M1 M2 M2 M4 M4 M6 M6 M7	(T) (T) (T) (T) (T) (T) (T) (T) (T) (T)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280	280 280 260 250 240 240 70	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 260 260 250 250	270 270 280 280 250 250 70 1 270 270 270 270 270 270 270	25 26 25 25 25
	Injection Unit Nozzle Nozzle T1 T2 T2 T3 T4 T5 Hopper Injection Unit M1 M1 M5 M6 M7 M8	(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	250 250 250 250 240 240 70 1 1 260 280 280 280 280 280 280 280	280 280 260 250 240 240 70	280 280 250 250 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 260 260 250 250	270 270 280 280 250 250 70 1 270 270 270 270 270 270 270 270	25 26 25 25 25
	Injection Urat Nozzle T1 T1 T2 T3 T3 T4 T5 T5 Hopper Injection Urat M1 M2 M3 M4 M5 M4 M6 M8 M8 M8	(©) (©) (©) (©) (©) (©) (©) (©) (©) (©)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	280 280 260 250 240 240 70	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 260 260 250 250	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	25 26 25 25 25
	Injection Unit Nozzle T1 T1 T2 T3 T4 T5 Hopper Injection Unit M1 M1 M4 M5 M6 M6 M7 M8	(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	250 250 250 250 240 240 70 1 1 260 280 280 280 280 280 280 280	280 280 250 250 240 240 70	280 280 250 250 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 270 260 260 250 250 50	270 270 280 280 250 250 70 1 270 270 270 270 270 270 270 270	2 2 2 2 2 2 3 4
	Injection Unit Nozzle T1 T1 T2 T3 T3 T3 T5 T5 Injection Unit M1 M2 M3 M4 M5 M4 M6 M6 M8 M9 M9 M9 M10 M1	(TO) (TO) (TO) (TO) (TO) (TO) (TO) (TO)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	280 280 250 250 240 240 70	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 250 50 3	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	21 21 22 22 21 21 21 21 21
	Injection Unit Nozzle T1 T1 T2 T3 T4 T5 Hopper Injection Unit M1 M1 M4 M5 M6 M6 M7 M8	(TO) (TO) (TO) (TO) (TO) (TO) (TO) (TO)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	280 280 250 250 240 240 70	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 250 50 3	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Unit Nozzle 171 172 173 174 175 Hopper Injection Unit M1 M2 M4 M5 M6 M7 M8 M8 M8 M8 M9 M9 M1	(©) (©) (©) (©) (©) (©) (©) (©) (©) (©)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	280 280 280 290 240 240 240 70	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 250 50 3	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	22 22 22 22 23 24 24 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27
	Injection Urat Nozzie T1 T1 T2 T3 T-6 Hopper Injection Urat M1 M2 M3 M4 M5 M6 M7 M8	(TO) (TO) (TO) (TO) (TO) (TO) (TO) (TO)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	280 280 280 290 240 240 240 70 1	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 50 50 50	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Urit Nozzle T1 T1 T2 T2 T4 T5 Hopper Injection Urit M1 M2 M2 M4 M4 M6 M6 M7 M8 M9 M10	(10) (10) (10) (10) (10) (10) (10) (10)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	260 260 260 250 240 70 1 1 1	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 250 50 3 3	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Unit Nozzle Nozzle 172 172 173 174 175 Hopper Injection Unit M1 M1 M1 M5 M6 M7 M9 M9 M9 M10 M10 M11 M11 M11 M11 M11 M11 M11 M11	(**) (**) (**) (**) (**) (**) (**) (**)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	200 200 200 240 240 240 70 1 1	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 250 50 3 3	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Urat Nozzle T1 T1 T2 T2 T2 T4 T5 Hopper Injection Urat M1 M2 M3 M4 M4 M6 M7 M8 M9 M10 M11 M11 M11 M11 M11 M11 M11 M11 M11	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	260 260 260 260 240 240 70 1 1 1	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 280 280 80 80 80 80 270 270 270 270 270 270 270	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Unit Nozzle T1 T1 T2 T3 T4 T5 Hopper Injection Unit M1 M1 M1 M5 M6 M7 M9 M1	(**) (**) (**) (**) (**) (**) (**) (**)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	260 260 260 260 260 260 260 270 70 1 1 1	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 250 50 3 3 3 270 270 270 270 270 270 270	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Urat Nozzle T1 T1 T2 T2 T3 T3 T4 T5 Injection Urat M1 M1 M2 M3 M4 M5 M4 M6 M8 M9 M10 M11 M12 M11 M12 M11 M12 M13 M14 M14 M15 M19 M10 M11 M11 M112 M113 M14 M14 M15 M15 M16 M17	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	260 260 260 250 250 240 240 240 1 1 1 1 200 200 200 200 200 200 200 20	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 280 280 80 80 80 270 270 270 270 270 270 270 270	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Unit Nozzle T1 T1 T2 T3 T4 T5 Hopper Injection Unit M1 M1 M1 M5 M6 M7 M8 M8 M8 M8 M9 M1 M10 M11 M11 M11 M11 M11 M11 M11 M11	(S)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	200 260 260 240 240 240 340 340 340 340 340 340 340 340 340 3	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 50 3 3 3 270 270 270 270 270 270 270 270 270 270	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	21 22 22 21 21 21 21 22 22 22 22 21 22 22
	Injection Unit Nozzle Nozzle 172 173 174 175 Injection Unit MM Injection Unit MM	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	200 200 200 200 240 240 340 1 1 1 1 200 200 200 200 200 200 200 20	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 50 3 3 3 270 270 270 270 270 270 270 270 270 270	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Unit Nozzle T1 T1 T2 T3 T4 T5 Hopper Injection Unit M1 M2 M2 M4 M4 M5 M6 M7 M8 M9 M10	(S)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	200 200 200 200 240 240 70 70 1 1 1	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 50 3 3 270 270 270 270 270 270 270 270 270 270	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Injection Unit Nozzle Nozzle 172 173 174 175 Injection Unit MM Injection Unit MM	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	200 200 200 200 240 240 340 1 1 1 1 200 200 200 200 200 200 200 20	280 280 250 250 240 240 70 1 1 280 280 280 280 280 280 280 280 280 280	270 270 280 280 250 50 50 3 3 270 270 270 270 270 270 270 270 270 270	270 270 280 280 250 250 70 270 270 270 270 270 270 270 270 270	222 222 222 222 223 224 227 227 227 227 227 227 227 227 227

Tri-Layer Paint (Satin Chrome)

	Code	Type	(%)
	P00278	Primer	47.6
Primer	P00350	Thinner	47.6
i miner	P7421	Hardener	\4.8
	Total		100.0
		Paint	83.2
Colour	P00052	Thinner	16.6
Colour	P7421	Hardener	0.2
	Total		100.0
		Coat	66.6
Coat	P00350	Thinner	33.3
Coat	P7421	Hardener	0.1
	Total		100.0

One-Layer Paint (Deep Black)

	Code	Туре	(%)
	P7433	Paint	71.4
Paint	P7421	Hardener	14.3
raint	P00054	Thinner	14.3
	Total		100.0



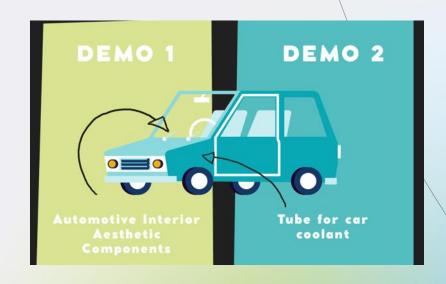
Test	Standard		Code	Α	В	С	Α	В	С
				1	layer paint		3 la	yers paint	
Colour	D25 5479 / ASTM D2244		а	-1,12	-1,05	-0,07	-1,13	-1,04	-0,07
Colour	D25 5479 / ASTIVI D2244	1	b	-0,06	0,01	-0,25	-0,06	0,01	-0,20
Initial Adhesion	B72 0200 / D25 1075		a-b	OK	OK	ОК	OK	OK	ОК
	Injection		0,0	0,0	0,0	0,0	0,0	0,0	0,0
Aesthetic (Visual)	Painted		0,0	0,0	0,0	1,0	0,0	0,0	1,0
(1.00)	Total		0,0	0,0	0,0	1,0	0,0	0,0	1,0
		\		OK	OK	OK	OK	OK	ОК
		,							
		Blistering	0	0	0	0	0	0	0
Resistance to inmersion	B72 0200 / D27 1327			OK	ОК	ОК	OK	OK	ОК
in water (Ford Tank)	,	Adhesion	a-b	a	a	a	a	a	а
				OK	OK	ОК	OK	OK	ОК
		1							
Resistance to washing	B72 0200 / D25 5376		0,0	0,0	0,0	0,0	0,0	0,0	0,0
with high pressure		\		OK	OK	ОК	OK	OK	ОК
		\		_	_	_	_		
Assessment - Overall		\	OK	5	5	5	5	5	5
Rating			NOK	1	0	2	1	0	2
_			\ %	100	100	100	100	100	100

Validation tests results were improved from previous trials and it can be confirmed that recycled material versions give same results as prime material versions.

Specification Deflection < 2 mm No change No break Report <100 mm/min 85±5% Frequency of descriptor's presence <6/10 ≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5	A	В	C
No change No break Report <100 mm/min 85±5% Frequency of descriptor's presence <6/10 ≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5			
No break Report <100 mm/min 85±5% Frequency of descriptor's presence <6/10 ≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5			
Report <100 mm/min 85±5% Frequency of descriptor's presence <6/10 ≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5			
<pre><100 mm/min 85±5% Frequency of descriptor's presence <6/10 ≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5</pre>			
<pre><100 mm/min 85±5% Frequency of descriptor's presence <6/10 ≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5</pre>			
85±5% Frequency of descriptor's presence <6/10 ≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5			
Frequency of descriptor's presence <6/10 ≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5			
≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5			
≥4 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5			
≥4/5 ≥4/5 ≥4/5 ≥4/5 ≥4/5			
≥4/5 ≥4/5 ≥4/5 ≥4/5			
≥4/5 ≥4/5 ≥4/5 ≥4/5			
≥4/5 ≥4/5 ≥4/5			
≥4/5 ≥4/5			
≥4/5			
>1/5			
24/ 3			
≥4/5			
≥4/5			
≥4/5			
No Odour			
No Micro-organism			
5			
5			
≥4/5			
≥4/5			
Colour change: 0			
Adhesion: a/b			
No change			
	≥4/5 ≥4/5 No Odour No Micro-organism 5 5 5 ≥4/5 ≥4/5 Colour change: 0	24/5 24/5 No Odour No Micro-organism 5 5 5 Colour change: 0 Adhesion: a/b No change	24/5 24/5 No Odour No Micro-organism 5 5 5 Colour change: 0 Adhesion: a/b No change

Regarding functionality, there are some tests with a NOK result. Basically they are grouped in Colour fastness to rubbing and Chemical resistance (hand cream) tests. They have NOK results but for all the versions, included the prime + prime version.

This means that the result is not linked directly to the material. It seems that it is linked to a lack of maturation process that could be probably solved working on all the process (injection and specially painting & curing process).



RECYCLED MATERIALS FOR AUTOMOTIVE SECTOR

DEMO 2: Automotive cooling circuit and its elements

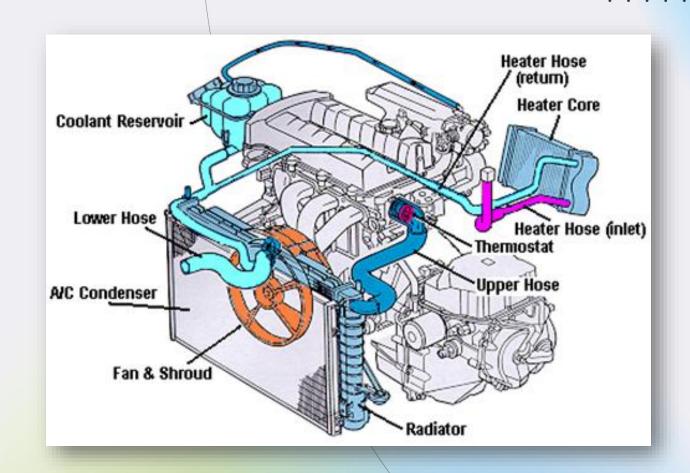
RECYCLED MATERIALS FOR AUTOMOTIVE

SECTOR cooling circuit and its elements

CONTENTS

- 1. Components of the cooling circuit.
- 2. Conventional hoses and new trends.
- 3. Champion formulations.
- 4. Manufacturing of the demonstrators.
- 5. Validation of the parts.

1. Components of the cooling circuit.



1. Components of the cooling circuit.

- o Radiator.
- o Water pump.
- o Thermostat.
- o Coolant.
- Expansion tank.
- o Heater core.

2. Conventional hoses and new trends.

2. Conventional hoses and new trends.

Internal combustion engine (ICE).

Tmax = 135°C - 150°C

Pmax = 2.5 bar - 3.5 bar

Conventional hoses.

RUBBER / YARN / RUBBER

Electric vehicles (EV).

Tmax = 90°C - 110°C

Pmax = 1.5 bar - 2.0 bar

New trends.

THERMOPLASTIC or THERMOPLASTIC ELASTOMERS

Advantages:

- 1.Recycclability
- 2. Weight reduction
- 3. Production times

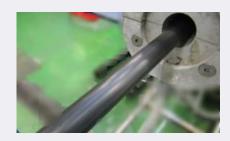
3. Champion formulations.



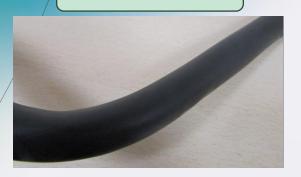
3. Champion formulations.

Formulation no.	Recycled content (%)	Hardness (ShD)	Tensile Strength (MPa)	Elongation at break (%)	MFI (g/10min)
		40 ± 5	>7	>400	1-9
DM2-008	0	41	13.7	440	2.4
DM2-012	18	38	14.7	496	10
DM2-011	23	38	14.0	422	14

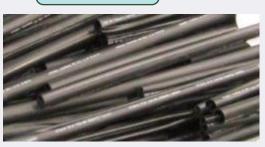
Extrusion of pipes


Thermoforming

Assembling



DM2-008 (0% REC)


DM2-012 (18% REC)

DM2-011 (23% REC)

DM2- rTPV

BURST TEST

Formulation no.	Burst pressure at 23°C (bar)	Burst pressure at 90°C (bar)
	≥8.5	≥8.5
DM2-008	17	11
DM2-012	15	9
DM2-011	13	8.5
DM2-rTPV	16	9.5

FATIGUE TESTS

Temperature = 100°C

Pressure = 2.5 bar (100.000 cycles)

3 bar (100.000 cycles)

Duration = 5 days

Temperature = 100°C

Pressure = 1.5 bar

Duration = 2 months

Ainara Telleria
atelleri@cikatek.com
Beñat Madariaga
benmad@maier.es

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HADEA. Neither the European Union nor the granting authority can be held responsible for them.

LUNCH TIME

Funded by the European Union

Views and opinions expressed are however those of the author(s) only and do not
 necessarily reflect those of the European Union or HADEA. Neither the European Union nor the granting authority can be held responsible for them.

TECHNICAL ADVANCEMENTS

REGULATORY RECOMMENDATIONS

DIGITAL TOOLS AND STAKEHOLDERS' RECOMMENDATIONS

11.30-12:00	Recycled materials for automotive sector Ainara Telleria, Cikautxo Beñat Madariaga, Maier	PRE-1000 tool Andromeda Scoppio, Plastics Recyclers Europe	Sustainability Assessments & EcoProfiles Julia Cilleruelo, GreenDelta		
12:00-13:00	Lunch Time				
13:00-13:30	Results from home appliances pilot: washing machine Ainara Telleria, Cikautxo	POPs Regulation Ana Rita Neiva, Coolrec Mathilde Taveau, Plastics Recyclers Europe	Digital Product Passport Teresa Oberhauser, Circularise		
13:30-14.00	Coffee Break and Networking				
14:00-14:30	Food-contact solutions Ana Rita Neiva, Coolrec.	Food-contact Regulation for recycled plastics Mathilde Taveau, Plastics Recyclers Europe	Stakeolders' engagement Eve-Liis Roosmaa, Tallin university		
14:30-15:00	Recap for the parallel sessions and a	closing remarks			
15:00-15:30	Networking				

RESULTS FROM HOME APPLIANCES PILOT: WASHING MACHINE

DEMO 4: Washing machine seals

RESULTS FROM HOME APPLIANCES PILOTS WASHING MACHINE

OBJE CTIVE

Demonstrate the possibility to use recycled materials in home appliances pilot.

Feasibility of the manufacturing processes (injection moulding) using recycled materials.

Analyse the level of fulfillement of the technical specifications with demonstrators with different recycled material levels.

Ainara Telleria Echaniz

PRIMUS project www.primus-project.eu

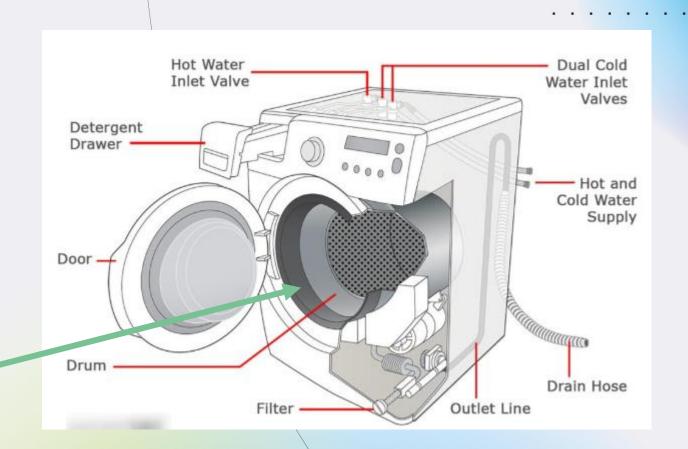
Material development for fluid handling division at

PRIMUS WP4 leader is experienced in material development for automotive industry. After a Chemical Degree, she did her masters in Applied Chemistry and Polymeric Materials followed by the PhD in Inorganic Chemistry. She is working at CIKATEK R&D and Innovation Centre for the past 8 years, developing new materials for the automotive industry, focused on the automotive cooling system and its elements.

CONTENTS

- 1. Components of the washing machine.
- 2. Rubber materials.
- 3. Champion formulations.
- 4. Manufacturing of the demonstrators.
- 5. Validation of the parts.

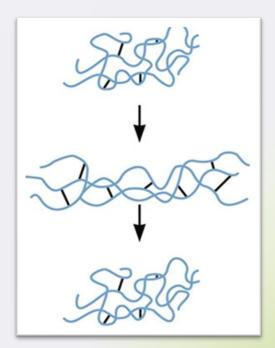
1. Components of the washing machine.



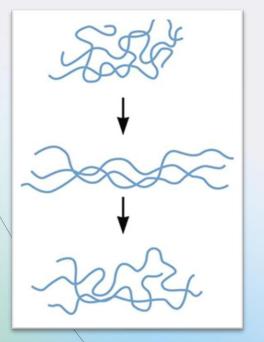
1. Components of the washing machine.

- o Drum.
- o Motor.
- o Water pump.
- o Control panel.
- o Detergent dispenser.
- o Drain hose.
- Door gasket.

2. Rubber materials.



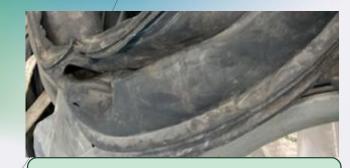
2. Rubber materials.


ELASTOMERS

- Crosslinked.
- Transformed into 3 dimensinal network.
- Do not flow.
- Do not have Tm.
- Elastic.

THERMOPLASTICS

- Uncrosslinked.
- Not a rigid network.
- Flow at high temperatures.
- Tm.


3. Champion formulations.

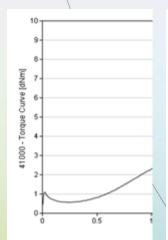
3. Champion formulations.

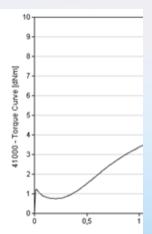
Collected end of life gaskets

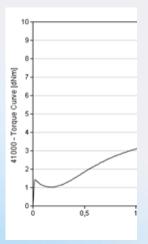
Equipment used for chunking

Micronizing installation

3. Champion formulations.


Formulation no.	Recycled content (%)	Hardness (ShA)	Tensile Strength (MPa)	Elongation at break (%)	ML, 1 min at 180°C
		38 ± 3	>8	>550	<1
DM4-013	0	37	10.3	835	0.56
DM4-010	10	37	9.4	754	0.75
DM4-012	20	38	8.2	705	1.02





4. Manufacturing of the demonstrators.

4. Manufacturing of the demonstrators.

Injection machine used for the production of the demonstrators

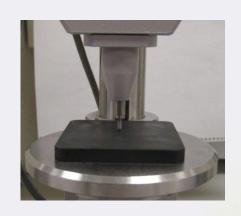
Mold used for the production of the demonstrators

4. Manufacturing of the demonstrators.

DM4-013 (0% REC)

DM4-010 (10% REC)

DM4-012 (20% REC)



MECHANICAL PROPERTIES

Formulation no.	Recycled content (%)	Hardness (ShA)	Tensile Strength (MPa)	Elongation at break (%)	Abrasion (mm³)
		38 ± 3	>8	>550	<500
DM4-013	0	36	10.1	945	431
DM4-010	10	36	9.5	795	487
DM4-012	20	37	8.3	766	497

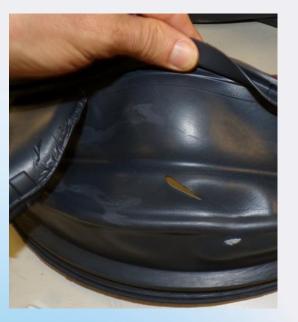
DURABILITY TEST

Temperature = 23°C

Dry conditions

Speed = 240 rpm

DURABILITY TEST


Formulation no.	Recycled content (%)	Time until hole appears (h)	% of decrease	
DM4-013	0	29 \		
DM4-010	10	27	-7	
DM4-012	20	21	-28	

Wear of the part after several hours of test but still the hole has not appeared

Hole produced as a consecuence of the durability test

Ainara Telleria

atelleri@cikatek.com

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HADEA. Neither the European Union nor the granting authority can be held responsible for them.

COFFEE BREAK • Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HADEA. Neither the European Union nor the granting authority can be held responsible for them. **Funded by** the European Union

Food-contact solutions

Ana Rita Neiva Coolrec

PRIMUS project www.primus-project.eu

Plastics Engineer at

PRIMUS refrigerator-to-refrigerator pilot leader.

Ana holds a master's degree in Polymer Engineering and specializes in tailoring polymeric materials. During her academic research, she developed more sustainable products for food packaging and recycled plastics in automotive applications. With a career developed in the recycling sector, she currently works as a Plastics Engineer at Coolrec Plastics carrying out several innovation projects.

FOOD-CONTACT SOLUTIONS

Break-out session

OBJE CTIVE

The aim of this session is to provide a comprehensive overview of the requirements to ensure the safety of using recycled high-impact polystyrene (rHIPS) in a new interior lining of a refrigerator.

A case study is presented, in which **technical**, **food safety and migration** tests were performed. Key findings are highlighted to show future opportunities in the uptake of rHIPS from refrigerators to be used in refrigerators, contributing to a circular economy.

PRIMUS PROJECT

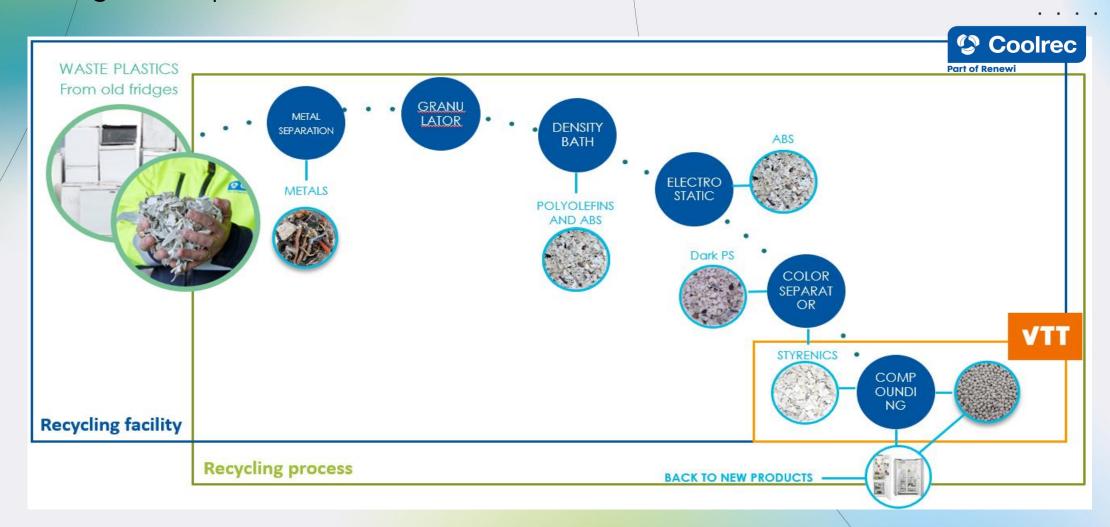
Work carried out

Regulatory background

Regulation (EU) No 1935/2004 sets requirements to all materials intended to come into contact with food and defines "food contact materials" (FCM).

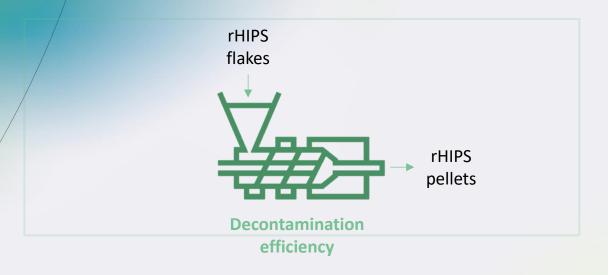
Regulation (EU) No 10/2011 sets requirements on plastics materials in contact with food and comprises risk assessments.

Regulation (EU) No 2022/1616 sets requirements on recycled plastics, mostly on the process itself for the control of contaminants.


Work on PRIMUS

- ☐ r-HIPS assessment and reformulation to be formed into suitable samples for food safety tests
- ☐ Upgrade material to match technical specifications
- ☐ Quantification of (Non) Intentional Added Substances (N)IAS on the input and output
- Migration testing and modelling tool (finished part inner liner of a refrigerator)

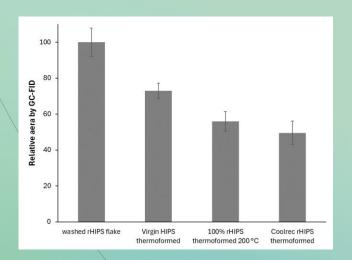
From refrigerators to refrigerators


FROM OLD TO NEW REFRIGERATORS

Closing the loop

FIRST ASSESSMENT OF RHIPS FLAKES AND PELLETS

Novel technology assessment


- 1. Sampling strategy applied (rHIPS flakes and pellets)
- 2. PRE-1000 methodology
- 3. Impact of the decontamination efficiency assessment

Key findings:

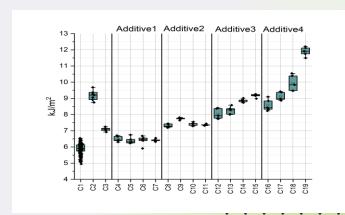
After assessing the decontamination efficiency, it was verified that thermoformed vHIPS sheets contain a higher concentration of PS oligomers than the ones made with rHIPS.

It is expected that PS oligomers are released during the long product lifetime.

MITIGATION MEASURES

Reduction of PS oligomers

A mitigation plan was prepared in which different conditions could be assessed, such as:



- ☐ The temperature settings and other parameters were adjusted such that the compounding conditions were as mild as possible to avoid thermomechanical degradation in the process (max 200 °C).
- ☐ Use of antioxidants in final formulation to reduce the amount of oligomers
- □ 'super cleaning' decontamination options Washing procedure applied to the flakes with pure water, in a high intensity mixer in room temperature, followed by incubation of the r-HIPS flakes at +100 °C/10h in an air circulation desiccant dryer. → Reduction of 70% PS trimers.
- \square **Vacuum degassing** of the Varex line (\overrightarrow{V}) on the compounds.

RE-FORMULATION OF RHIPS RECIPE

Varex-line compounding

- Upgrade compounded recipes considering virgin HIPS properties
 - ☐ Washing, homogenization, compounding and mechanical characterization performed
 - ☐ Several recipes identified to boost rHIPS properties
 - ☐ Compounding with food grade TPEs to improve mechanical properties
 - ☐ Adding virgin HIPS and other additives to the compound

DEMONSTRATOR

Sheet extrusion and thermoforming

Recipes tested:

TRIAL	rHIPS	Impact modifier	vHIPS	Antioxidant	Processing T
VAREX 1	100%				220°C
VAREX 2	100%				200°C
VAREX 3	70%	12%	18%	0.1%	200°C
VAREX 4	50%	8%	42%	0.1%	200°C

Recipe selected High amount of oligomers

Selection

12% food contact TPE added to reach an acceptable level of 10-15 kJ/m² Charpy N impact strength and increase the ESCR, **18% virgin HIPS** to boost melt viscosity, and **0.1% antioxidants** to reduce the concentration of PS oligomers generated during processing.

Pilot scale extrusion and thermoforming

After using the Varex line to produce the recipe number 3, the extruded sheets and the thermoformed samples were produced at VTT.

FOOD CONTACT SAFETY ASSESSMENT

(Non) Intentional added substances - (N)IAS

- Monitoring of (N)IAS on rHIPS flakes, rHIPS pellets and rHIPS thermoformed sheet.
- Assessment of Novel technology decontamination efficiency.
- ☐ Risk assessment through the development of a migration modelling tool. Use of several exposure scenarios for theoretical migration.
- ☐ Regulation (EU) 10/2011 and Cramer Classes are used for the toxicological evaluation of substances, allowing the establishment of limits.

Key findings:

Substances detected on the flakes were not detected on the thermoformed sheet, proving the efficiency of the decontamination technology.

Example: DEHP (phthalate)

Styrene dimers and trimers were detected in higher concentration on the thermoformed sheets than on flakes, due to degradation from thermal cycles.

The migration modelling tool showed a considerable safety margin when comparing the theoretical migrated substances with the Regulatory limits.

FOOD CONTACT SAFETY ASSESSMENT

Overall and specific migration

- Assessment of the overall migration on the rHIPS thermoformed sheet
 - ☐ Simulants A (ethanol 10%), B (acetic acid 3%) and D2 (oil) which simulate all types of foodstuffs.

Test - simulant	Simulant	Unit	Result	Criteria	Compliance ¹
Overall migration - simulant A	10% ethanol	mg/dm²	< 0.5 (< 0.5; < 0.5; < 0.5)	≤ 10	compliant
Overall migration - simulant B	3% acetic acid	mg/dm²	3.0 (3.5; 3.5; 2.0)	≤ 10	compliant
Overall migration - simulant D2	Olive oil	mg/dm ²	5.5 (4.5; 6.0; 5.5)	≤ 10	compliant

¹ Commission Regulation (EU) 10/2011 on plastic materials and articles intended for contact with food, as amended (last update Regulation (EU) 2023/1627 of 10 August 2023).

- ☐ Assessment of the specific migration on the rHIPS thermoformed sheet*
 - For specific substances such as metals, intentional-added substances (e.g. impact modifiers, antioxidants), etc.

*Laboratory tests ongoing

Key findings:

The overall migration results were positive after assessing the three different simulants and proving the compliance required by Regulation (EU) 10/2011.

RECOMMENDATIONS

Considerations should carefully be taken when assessing food contact
safety, such as:
☐ Efficiency of the decontamination technology;
□ Different reformulation options can be considered to form suitable samples - use of virgin materials as a functional barrier or mixture, antioxidants, stabilizers, etc;
Use of mild conditions during compounding, sheet extrusion and thermoforming;
☐ Apply "super cleaning" decontamination to reduce PS trimers
Use melt filtration and an efficient vacuum degassing system;
Exposure scenarios of the final application - temperature, time, type of food in direct contact, e.g. fruits and vegetables, and indirect contact with material through packaging;
☐ Contact area of the final application; volume of food and volume of polymer;
☐ Choice of simulants;
Example: for migration, it is relevant to select a simulant that represents the food in direct contact (fruits and vegetables)

THANK YOU!

ANY QUESTIONS?

Ana Neiva

ana.Rita.Neiva@coolrec.com

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HADEA. Neither the European Union nor the granting authority can be held responsible for them.